معمولاً بحرانیترین تمركز تنش در جداره تونل (یا فضایی دیگر) به وجود میآید در هر نقطه از جداره تونل مولفههای مختلفی از تنش را میتوان در نظر گرفت به عنوان مثال در شكل 4ـ2 تنشهای شعاعی ، مماسی و برشی (Tro) را میتوان به هر جزء از جداره مؤثر دانست در بین مولفهها معمولاً تنش مماسی دارای تأثیر بیشتری در پایداری بوده و لذا در بررسی وضعیت تمركز تنش
قیمت فایل فقط 6,900 تومان
سیر تحول تونلسازی
نگاهی اجمالی به سیر تحول تونلسازی
اگر حفر قنوات بخشی از عرضه تونلسازی محسوب شود آنگاه قدمت این فن به 2800 سال قبل از میلاد بر میگردد. زیرا باستانشناسان معتقدند كه حفر قنوات در مصرو ایران از آن زمانها معمول بوده است. تذكر این نكته در اینجا در خور توجه است كه در سال 1962 طول كل قنوات در ایران را 000/160 كیلومتر تخمین زدهاند. اگر از این مورد كه ذكر شد صرفنظر شود اولین تونل زیرآبی در 2170 سال قبل از میلاد در زمان بابلیها در زیر رودخانه فرات و بطول یك كیلومتر ساخته شد كه هر چند بصورت حفاری تونل اجرا نشده است ولی همین، كار حداقل تجربه و تبجر معماران آن عصر را نشان میدهد. از این نوع كار دیگر اجرا نشده است تا 4000 سال بعد كه در 1825 تونل تیمز زیر رودخانه تیمز ندن ساخته شد. تونلزنی درون سنگها به علت شكل حفاری و عدم امكانات و عدم نیاز ـ به جز موارد بسیار محدود ـ فقط در دو قرن اخیر توسعه یافته اس. هر چند اختراع باروت به قرنها قبل بر میگردد و بعضی آنرا حتی به قرن دوم میلادی نسبت میدهند ولی كاربرد آن در شكستن سنگها احتمالاً در قرن 16 بوده است و اختراع دینامیت در قرن 19 موجب تحولات تدریجی ولی اساسی در سهولت ایجاد تونل در سنگها شد گرچه ایجاد تونل در سنگها به علت سختی سنگ نیاز به مواد منفجره و یا وسایل بسیار سخت و برنده دارد ولی در سنگهای خیلی نرم و در رسوبات سخت نشده، مشكل تونلزنی به لحاظ نگهداری تونل است. بطوری كه تا قبل از اختراع شیلد توسط در سال 1812، ایجاد تونلهای بزرگ مقطع در رسوبات سست فوقالعاده مشكل مینمود. اولین كاربرد شیلد در 1825 در حفر تونل زیر رودخانه تیمز بود. هر چند حفر این تونل 5/1 كیلومتری حدود 18 سال طول كشید روش شیلد بعداً توسط تكمیل گردید و بعلاوه نامبرده كاربرد هوای فشرده را نیز در شیلد عملی ساخت (1886) با گسترش شهرها، اختراع ترنها، افزایش جمعیت، پیشرفت صنایع و نیاز مبرم به معادن گسترش شبكههای زیرزمینی، هم به منظور عبور و مرور و هم بمنظور انتقال آب و فاضلاب و نیز در پیشروی معادن و غیره ضرورت یافت و با سرعت روز افزون از اواخر قرن 19 تاكنون پیشرفتهای چشمگیری حاصل گردیده است. بگونهای كه در سالهای اخیر استفاده از ماشینهای حفر تمام مقطع تونل رشد سریعی داشته است. ایده استفاده از این ماشینها از زمانهای دور است. اولین ثبت شده در امریكا توسط جان ویلسون در سال 1856 برای تونل هوساك در ماساچوست بوده است ولی تنها توانسته 3 متر از تونل 7600 متری را حفر نماید در دهههای اخیر توسعه بسیار زیادی پیدا كرده بطوری كه در بسیاری از موارد بعنوان اولین گزینه برای حفر تونل میباشد.
مقدمه
در جمعاوری و تهیه اطلاعات موردنیاز برای طراحی هر نوع حفاری زیرزمینی پس از انجام مطالعات اقتصادی و فنی (امكانپذیری مقدماتی طرح) پیجوئیهای لازم و مقایسهگرینههای مختلف و انتخاب راهحل مطلوب مقدماتی كه برای دسترسی به هدف موردنظر ممكن میباشد، مطالعات مقدماتی و تفصیلی زمینشناسی و اقلیمشناسی منطقه اجرای طرح بایستی توسط مهندسین مشاور ذیصلاح پذیرد.
اقدام به جمعآوری این اطلاعات و انجام مطالعات، اولین اقدام لازم در طراحی هرگونه فضای زیرزمینی بهر نوع و بهر شكل و برای هر هدفی كه باشد خواهد بود شناخت زمینشناسی محل احداث سازه، زیرزمینی از دیدگاه تنشهای موجود و بارهای وارده بر وسائل نگهداری و انتخاب روشهای كاربردی مطلوب حائز كمال اهمیت است.
اطلاعاتی كه از نقشههای زمینشناسی بزرگ مقیاس حاصل میشود عمومی و كلی بوده و تمامی نیازهای طراحان سازههای زیرزمینی را در بر نمیگیرد. لذا برای تعیین دقیق مشخصات زمینشناسی، مطالعات كلی و دقیقتر خاك و سنگ از ضروریات اولیه طراحی است.
هدفهای اصلی اكتشافات زمینشناسی
1ـ تعیین شرایط اولیه تشكیل و وضعیت واقعی سنگها، شرایط فیزیكومكانیكی آنها در محدوده حفریات و فاصله بین حفریات تا سطح زمین
2ـ تعیین شرایط سطحی زمین از نقطهنظر آبهای سطحی، زهكشیهای طبیعی، قناتها، چشمه و رودخانهها
3ـ جمعآوری اطلاعات مربوط به گازدهی، حرارت و آب در زیرزمین
4ـ تعیین مشخصات زمین ساختی، تنشها و اثرات آنها روی دامنه فشارها در محدوده حفریات زیرزمینی
مـراحـل اكتشـافی زمینشناسی از دیدگاه حفر و احداث حفریات زیرزمینی
اقدامات اكتشافی از دیدگاه احداث حفریات زیرزمینی شامل سه مرحله زیر است:
الف ـ تحقیقات و اكتشافات مربوط به مشخصات عمومی طرح قبل از شروع طراحی
1ـ الف ـ بررسی كلی منطقه از دیدگاه تاریخی و آمارهای موجود، سنگشناسی چینهشناسی و محیط زیست
2ـ الف ـ بررسی عكسهای هوائی، وضعیت گیاهان منطقه، مشخصات بارز شیمیائی سنگها و كشف شرایط اولیه تشكیل آنها (آذرین یا رسوبی)، مطالعه گسلها و چینخوردگیها
3ـ الف ـ مطالعات آبشناسی، وضعیت رودخانهها، سیلها، تعیین PH آب، تعیین مشخصات حرارتی و شیمیائی و املاح موجود در آبهای سطحی برای تشخیص طبیعت سنگها و جنس زمین
4ـ الف ـ مطالعات ژئوشیمی برای تعیین مشخصات شیمیائی سنگها و خاكهای سطحی
5ـ الف ـ تعیین مشخصات ژئوفیزیكی با روشهای مقاومت الكتریكی، لرزهنگاری و غیره و مقایسه آنها با نمونههای حاصل از گمانههای اكتشافی
6ـ الف ـ مطالعات دقیق درزهها، گسیختگیها و تهیه نقشههای مربوطه
ب ـ تحقیقات دقیق ژئوتكنیكی (زیرزمینی) بموازات طراحی و قبل از شروع عملیات احداث
1ـ ب ـ جمعاوری اطلاعات مسلم از شرایط فیزیكی و شیمیائی سنگهای دربرگیرنده حفریات، هوازدگی، وزن مخصوص و مقاومت آنها
2ـ ب ـ جمعاوری اطلاعات در مورد استقرار و شیب لایهها، چینخوردگیها، گسلها، سطوح لایهبندی و درزهها
3 ـ ب ـ جمعاوری اطلاعات مربوط به: مقدار، كیفیت، خواص شیمیائی و عمق آبهای زیرزمینی
4 ـ ب ـ جمعاوری اطلاعات مربوط ب: مقدار، كیفیت و خواص شیمیائی گازها و افزایش درجه حرارت زمین نسبت به عمق
ج ـ تحقیقات تكمیلی در زمان عملیات احداث حفریات
تحقیقات تكمیلی زیر نه تنها برای كنترل اطلاعات داده شده توسط طراحان كه برای اطمینان از درستی روش اجرائی انتخاب شده و در صورت لزوم اصلاح و تغییر روشها بایستی صورت گیرد.
نمونه این تحقیقات تكمیلی در زمان احداث حفریات زیرزمینی عبارتند از:
1ـ ج ـ حفر پیش تونلها و نمونهگیری از سنگهای جلوتر از سینهكار و مطالعه سایر شرایط زمین محل طرح
2 ـ ج ـ تجزیه شیمیائی آبها و گازها
3ـ ج ـ اندازهگیری تنشها و تقارب مقاطع
نتیجهگیری
احداث سازههای زیرزمینی، در جهت دستیابی بهر هدف و یا در مسیر حل هر مشكلی كه باشد، نسبت به احداث سازهای مشابه در روی زمین بسیار پیچیدهتر و مشكلتر و در نهایت بسیار گرانتر و پرهزینهتر خواهد بود
اجرای اینگونه طرحها، حتی با بكارگیری بهترین امكانات و توجه به كلیه مقررات ایمنی، نسبت به سازههای روی زمین، با خطرات جانی و مالی بیشتری روبرو میباشد با توجه به این حقایق است كه تهیه طرح توسط مهندسین مشاور، كه بر پایه مطالعات مقدماتی و تفصیلی زمینشناسی صورت پذیرفته باشد از الزامات و ضروریات هر پروژه زیرزمینی است.
بدین ترتیب مشاور انتخابی برای طراحی سازههای زیرزمینی باید دارای توانائیهای لازم جهت انجام دقیق اكتشافات و مطالعات موردنیاز بوده و قدرت تحلیل و طبقهبندی اطلاعات و كاربرد آنها را در طراحی صحیح پروژه داشته باشد و با كلیه دستورالعملهای بینالمللی اجرائی و روشهای مدرن حفاری آشنا باشد.
بررسی نیروهای وارده بر فضاهای زیرزمینی
1ـ تنش در پوسته زمین
وضعیت تنش در پوسته زمین، برای زمان و مكان معین، نتیجه تأثیر نیروهایی با خصوصیات و فشارهای گوناگون میباشد. معمولاً قبل از شروع هر كار مهندسی در ساختارهای زمینی سعی میشود وضعیت تنش را بدست آورد. وضعیت تنش زمین در حالت بكر پس از انجام عملیات حفاری و ایجاد ساختار دچار دگرگونی شده است و توزیع جدیدی از تنش در سنگها و محدوده آن به وجود میآید.
تنشهای مؤثر بر هر نقطه از پوسته زمین را میتوان ناشی از فشاهای زیر دانست.
1ـ تنشهای ثقلی: این تنشها بر اثر وزن طبقات فوقانی ایجاد میشود. به واسطه محصور بودن سنگها در دل زمین، تنشهای جانبی نیز در اثر فشار ثقلی گسترش مییابد. (اثر پواسون)
2ـ تنشهای تكتونیكی: این تنشها بواسطه تنشها بواسطه تأثیر نیروهای تكتونیكی و زمین ساختی نظیر كوهزائی و یا گسل بوجود آید.
3ـ تنشهای محلی: این تنشها بواسطه ناهمگونی در جنس طبقات یا سنگهای همجوار بوجود میآیند. نظیر تمركز تنش در عدسیهای ماسه سنگی یا اطراف كنكرسیونها.
4ـ تنشهای باقیمانده: این تنشها در حین تشكیل طبقات یا توده سنگها و در اثر فرآیندهایی نظیر كریستالیزاسیون، دگرگونی، رسوبگذاری، تحكیم و بیآب شدن در سنگها بسته به مورد گسترش مییابد. مثلاً تنش حاصل در مرز بین كریستالهای یك سنگ كه دارای خواص فیزیكی متفاوت بوده و سرد شدن آنها متشابه یكدیگر نیست از این نوع میباشند.
از بین انواع تنشهای فوق تنشهای ثقلی را میتوان از طریق محاسبه بدست آورد. ذیلاً به انواع تنشهای ثقلی و نحوه برآورد آنها اشاره میكنیم.
فرض كنیم كه توده سنگی در عمق H و تحت محدودیت كامل دارای رفتار الاستیك باشد. در این صورت وضعیت تنش چنین خواهد بود.
تنش قائم اصلی
كه در آن v وزن مخصوص سنگهای فوقانی میباشد.
كه در آن ضریب پواسون سنگ موردنظر میباشد.
در این حالت نسبت تنشهای اصلی عبارتند از:
اگر محدودیت جانبی برای سنگ كامل نباشد مقدار H بیشتر از حد بالا خواهد بود. همینطور اگر سنگ ما كاملاً دارای رفتار پلاستیك باشد میزان تنش هیدرواستاتیكی (M=1 و SH=Sv)
باید توجه داشت برای سنگی با مشخصات مكانیكی معین یك عمق بحرانی وجود دارد كه پس از آن سنگ دارای رفتار الاستیك بوده و تنش افقی ثقلی را میتوان از ملاك تسلیم بدست آورد به نحوهی كه:
كه در آن OF برابر تنش تسلیم (yield stress) میباشد.
همینطور تنش قائم Sv در سنگهای غیرهمگن (Heteregenous) ممكن است بواسطه تأثیر ساختهای زمینشناسی در یك فاصله افقی محدود دچار نوسانات زیاد گردد. در شكل زیر همانطوری كه ملاحظه میشود وضع تنش قائم در صفحات افقی موازی كه یكسری طبقات چین خورده را قطع میكند یكسان تغییر نمیكند در طول خط تنش قائم واقعی در زیر ناودیس به 60% بیشتر از مقدار و در نقطه درست زیر تاقدیس به صفر میرسد.
تأثیر چینخوردگی سنگهای لایهای غیر هموژن روی تنشهای قائم زمین(1)
تأثیر چینخوردگی سنگهای لایهای غیر هموژن روی تنشهای قائم زمین(2)
در حالت دوم سنگهای چینخورده نظیر یك چتر از انتقال مستقیم نیروهای فوقانی به سنگهای تحتانی جلوگیری میكند. حال اگر طبقاتی در طول تاریخ حیات خود دچار تغییراتی نظیر فرسایش شده باشد مشخصات و وضعیت تنشهای افقی باز هم با آنچه از رابطه ساده SH=MSv بدست میآیند متفاوت خواهند بود. فرض كنیم جزئی از یك سنگ كه در عمق Ho قرار دارد و در آن M=Mo است بواسطه تخریب ضخامتی برابر از طبقات رویی دچار كاهش بار گردد. (شكل 2ـ2) به واسطه حذف مقدار از تنش قائم تنش افقی به اندازه كاهش مییابد. بنابراین بر اثر فرسایش ضخامت از سنگ، تنش افقی در عمق برابر خواهد بود.
بنابراین افزایش طبقات رویی باعث افزایش M شده و تنش افقی در اعماق كمتر از یك مقدار معین از تنش قائم بیشتر خواهد بود.
حال اگر چنانچه علاوه بر تنشهای ثقلی انواه دیگر تنش نیز بر سنگ تأثیر نماید ممكن است نسبت تنشهای افقی و قائم كاملاً متفاوت از آن است كه ذكر شد. برخی از دانشمندان معتقدند كه بواسطه خزش سنگها در طول اعصار زمینشناسی اختلاف تنشها از بین رفته و شرایط هیدرواستاتیكی فراهم آمده است.
تأثیر فرسایش روی تنشهای موجود در اعماق زمین
اندازهگیری بر جایی تنشهای قائم و افقی در نقاط مختلف دنیا و تجربه و تحلیل آماری آنها نشان میدهد كه روابط زیر بین تنش قائم و افقی و عمق نقطه موردنظر برقرار است: (Herget. G , 1973)
در این روابط H برحسب فوت و Sv و SH برحسب pst میباشد.
2ـ4 تنش در اطراف فضاهای زیرزمینی
فرض كنیم نقطه A در عمق 700 متری زمین تحت تأثیر تنشهای ثقلی قرار داشته باشد. وزن مخصوص سنگها در طبقات فوقانی 55/2 و ضریب پواسون سنگ در نقطه A برابر 3/0 فرض میشود. وضعیت تنشهای ثقلی در نقطه A بدین ترتیب خواهد بود.
همانطوریكه ملاحظه میشود تنشهای افقی و قائم هر دو فشاری هستند و سنگها معمولاً در فشار دارای استحكام كافی میباشد لذا این سؤال پیش میآید كه در این شرایط ریزش فضاهای زیرزمینی به چه دلایلی صورت میگیرد. پاسخ این سؤال این است كه ایجاد یك فضای زیرزمینی سبب متمركز شدن و افزایش سطح تنش در نقاطی واقع در اطراف فضاهای مزبور میگردد، به نحویكه تنش موضعی در این نقاط از حد مقاومت سنگها فراتر میرود همچنین بسته به عواملی نظیر شكل تونل وضعیت اولیه تنش ممكن است تنشهای كششی در نقاطی توسعه پیدا كنند و چون مقاومتها سنگها به كشش به مراتب كمتر از مقاومت آنها به فشار است لذا منجر به ریزش میگردد.
1ـ2ـ4 تعریف تمركز تنش
نسبت تمركز تنش طبق تعریف عیارتند از نسبت تنش در یك نقطه مشخص یك جسم به میانگین یكی از تنشهای مؤثر بر جسم در شكل 3ـ2 داریم:
(میانگین تنش مؤثر در نقطه P1)
(میانگین تنش مؤثر در نقطه P2)
حال اگر سطح A1 مثلاً برابر سطح A2 باشد خواهیم داشت
تمركز تنشی
بدین ترتیب تنش متوسط مؤثر در نقطه P2 تمركزی برابر با ایجاد مینماید.
چگونگی تمركز تنش در اجسام باریك شده
این موضوع در مورد فضاهای زیرزمینی نیز پیش میآید و بنابراین ضریب تمركز تنش در نقطه پس از ساختمان فضای موردنظر عبارت است از: نسبت تنش در یك نقطه مربوطه پس از ایجاد ساختمان به تنش در همان نقطه قبل از ایجاد ساختمان مزبور در شكل بالا قسمتهای هاشورخورده را میتوان قسمتهایی از دو تونل موازی فرض نمود كه در توده سنگ موردنظر حفر شدهاند. نتایج بالا را نیز میتوان در مورد آنها تعمیم داد. اگر علامت scf مثبت باشد تنش تمركز یافته با تنش اولیه هم علامت است ولی اگر scf منفی باشد تنش تمركز یافته دارای علامت خلاف تنش اولیه است.
2ـ2ـ4 توزیع تنش
اگر چنانچه مولفههای تنش (یا تنشهای اصلی) در هر نقطه از جسمی مشخص باشد در این صورت میگوییم میدان توزیع تنش مشخص است برای مثال در یك میدان تنش ثقلی ساده، تنش در هر نقطه تابع مستقیمی از وزن طبقات فوقانی و به عبارت دیگر عمق نقطه (فاصله آن از سطح میباشد) در بررسی وزن تنشها در اطراف فضاهای زیرزمینی معمولاً تنش در هر نقطه را با تنش قائم اولیه Sv یا( مقایسه نموده و ضریب تمركز تنش را تعیین مینمایند یعنی
بنابراین در حالت بكر و دست نخورده ضریب تمركز تنش برای كلیه نقاط درونی زمین برابر با 1+ است ولی به محض ایجاد یك فضای زیرزمینی، این وضعیت اولیه به هم میخورد و نتیجتاً تنش در برخی نقاط نسبت به وضع اولیه خود افزایش یا كاهش یا تغییر علامت میدهد. این تغییر بستگی مستقیم به شكل هندسی فضای حفر شده دارد تا مسافتی دور از فضای مربوطه مشاهده میگردد ولی پس از آن فاصله تنشها به حالت اولیه خود باقی میماند به عنوان مثال اگر در یك میدان تنش ثقلی ساده فضایی دایرهای حفر شود نقاطی كه بیش از 5 برابر شعاع دایره از مركز آن فاصله دارند دچار اغتشاش تنش نمیگردند و وضع اولیه خود را حفظ میكنند.
3ـ2ـ4 تنشهای مرزی یا جدارهای (Boundary stresses)
معمولاً بحرانیترین تمركز تنش در جداره تونل (یا فضایی دیگر) به وجود میآید. در هر نقطه از جداره تونل مولفههای مختلفی از تنش را میتوان در نظر گرفت. به عنوان مثال در شكل 4ـ2 تنشهای شعاعی ، مماسی و برشی (Tro) را میتوان به هر جزء از جداره مؤثر دانست. در بین مولفهها معمولاً تنش مماسی دارای تأثیر بیشتری در پایداری بوده و لذا در بررسی وضعیت تمركز تنش در جداره این مولفه را در نظر قرار میدهند.
تنشهای مؤثر بر جزء سطح جداره تونل
4ـ2ـ4 ضریب ایمنی (Safety factor)
طبق تعریف نسبت مقاومت سنگ (كه طبق یكی از ملاكهای تسلیم تعریف میشود) به تنش اعمال شده را ضریب ایمنی گویند.
تنش مؤثر / مقاومت سنگی = ضریب ایمنی
همانطوری كه میدانید معمولاً اختلاف قابل توجهی بین اندازه مقاومت نمونه سنگ در آزمایشگاه و مقاومت واقعی توده بر جای سنگ وجود دارد. با منظور نمودن ضریب ایمنی در محاسبات میتوان این اختلاف را موردنظر قرار داد.
این امر در مورد سایر خواص سنگ نیز صادق است. و با احتساب یك ضریب ایمنی مناسب میتوان مقادیر بدست آمده برای مشخصههای ماده سنگ را در مورد توده سنگ بكار برد. با به كارگیری یك ضریب ایمنی همچنین اثر خطاهای احتمالی را كه به بواسطه فرضیات متعدد در طول محاسبه تنش یا تغییر شكل ممكن است پیش آید خنثی مینمائیم.
در عمل مقادیر متفاوتی از ضریب ایمنی برای كارهای مختلف پیشنهاد میگردد یكی از مقادیر متداول كه در طراحی ساختارهای زیرزمینی توصیه میشود. (abert and durall) به قرار زیر است.
1ـ برای قسمتهای تحت فشار (نظیر پایهها و دیوارههای معدنی) S.F=2-4
2ـ برای قسمتهای تحت كشش (نظیر سقف تونل در سنگهای مطبق) SF=4-8
مقادیر كمتر ضریب ایمنی در طراحی ساختارهای كم عمر و مقادیر بیشتر در ساختارهای طویلالعمر به كار برده میشود.
5ـ2ـ4 تنش حول فضای زیرزمینی با مقطع دایرهای
شكل 5ـ2 وضع تمركز تنش را در طول محورهای تقارن یك فضای دایرهای نشان میدهد. كه تحت تأثیر یك میدان تنش یك محوری در امتداد قائم قرار دارد. تمركز تنش تابعی از میزان اغتشاش تنش حاصل از صفر فضای زیرزمینی بوده و برحسب تعریف
میانگین تنش مؤثر خارج از وزن اغتشاش / تنش در نقطه موردنظر = تمركز تنش
تنش مماسی در مرز فضای زیرزمینی و در امتداد محور افقی ماكزیمم است و ضریب تمركز تنش در اینحالت برابر 3 است. همانطوریكه در شكل ملاحظه میشود با دور شدن از فضای زیرزمینی بسرعت به حالت نرمال میل میكند. تنش مماسی روی محور قائم و در مرز فضا، برابر تنش متوسط مؤثر ولی با علامت مخالف میباشد، یعنی كه تنش فشاری وارده ایجاد تنش مماسی كششی و برابر همان تنش فشاری خواهد نمود.
به هم خوردگی در وضع تنشهای شعاعی كمتر میباشد كلیه اغتشاشات برای نواحی كه فاصله آنها از مركز دایره از دو برابر قطر دایره بیشتر است عملاً از بین میرود (r=4a) كه در آن a شعاع دایره و r فاصله شعاعی از مركز فضای مربوطه است
قیمت فایل فقط 6,900 تومان
برچسب ها : سیر تحول تونلسازی , طرح توجیهی سیر تحول تونلسازی , دانلود سیر تحول تونلسازی , عمران , ضریب ایمنی , چگونگی تمركز تنش در اجسام باریك شده , تنشهای مرزی یا جدارهای , تنش حول فضای زیرزمینی با مقطع دایرهای , تونل سازی , تونل , , , دانلود طرح توجیهی , پروژه دانشجویی , دانلود پژوهش , دانلود تحقیق , پایان نامه , دانلود پروژه